Boards and Beyond: Pulmonary

A Companion Book to the Boards and Beyond Website

Jason Ryan, MD, MPH
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Page Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary Anatomy</td>
<td>1</td>
<td>Treatment of COPD/Asthma</td>
</tr>
<tr>
<td>Pulmonary Physiology</td>
<td>4</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>8</td>
<td>Pleural Disease</td>
</tr>
<tr>
<td>Pulmonary Circulation</td>
<td>13</td>
<td>Lung Cancer</td>
</tr>
<tr>
<td>Ventilation & Perfusion</td>
<td>18</td>
<td>Sleep Apnea</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>23</td>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>Lung Physical Exam</td>
<td>28</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Pulmonary Function Tests</td>
<td>31</td>
<td>Sarcoidosis</td>
</tr>
<tr>
<td>Obstructive Lung Disease</td>
<td>33</td>
<td>Pulmonary Embolism</td>
</tr>
<tr>
<td>Restrictive Lung Disease</td>
<td>41</td>
<td>Chest X-rays</td>
</tr>
</tbody>
</table>
Surfactant
- Exhale alveoli shrink
- Could collapse atelectasis
- ↓ efficiency gas exchange
- Surfactant allows alveoli to avoid collapse

Alveoli
- Small sacs
- Gas exchange
- Surrounded by capillaries

Mucous
- Secretions produced by respiratory tract
- Mostly glycoproteins and water
- Secreted by goblet cells in bronchial walls
- Protects against particulates, infection
- Beating cilia move mucous to epiglottis swallowed

Zones
- **Conducting Zone**
 - No gas exchange
 - Large airways: nose, pharynx, trachea, bronchi
- **Respiratory Zone**
 - Gas exchange
 - Respiratory bronchioles, alveolar ducts, alveoli

Pulmonary Anatomy

Jason Ryan, MD, MPH
Neonatal respiratory distress syndrome

- Risk factors:
 - Prematurity
 - Maternal diabetes: high insulin levels decrease surfactant production
 - Cesarean delivery: lack of vaginal compression stress leads to reduced fetal cortisol and reduction in surfactant

Surfactant

- Secreted by type 2 pneumocytes
- Mix of lecithins
- Especially dipalmitoylphosphatidylcholine

Fetal Lung Maturity

- Lungs are “mature” when enough surfactant present
- Occurs around 35 weeks
- Lecithin–sphingomyelin ratio (L/S ratio)
- Both produced equally until ~35 weeks
- Ratio >2.0 in amniotic fluid suggests lungs mature
- Preterm delivery: betamethasone used to stimulate surfactant production in lungs

Neonatal respiratory distress syndrome

- Hyaline membrane disease
- Atelectasis
- Severe hypoxemia/pCO2 (poor ventilation)
- Poorly responsive to O2
 - Lungs collapsed (alveoli)
 - Intrapulmonary shunting

Neonatal respiratory distress syndrome

- Many complications
- Bronchopulmonary dysplasia
- Patent ductus arteriosus (hypoxia keeps shunt open)
- Retinopathy of prematurity
 - When infant taken off oxygen
 - Neovascularization in the retina
 - Retinal detachment → blindness

Surfactant

\[
\text{Distending Pressure} = \frac{2 \ast \text{(surface tension)}}{\text{radius}}
\]
Aspiration

- Right lung is more common site of aspiration
 - Right bronchus wider
 - Less angle
 - More vertical path to lung

Aspiration Foreign Body

- If upright
 - Right inferior lobe – lower portion
- If supine (lying flat)
 - Right inferior lobe – superior portion

Diaphragm

- Caval opening
 - T8
 - IVC
- Esophageal hiatus
 - T10
 - Esophagus, Vagus nerve
- Aortic hiatus
 - T12
 - Aorta, thoracic duct, azygous vein

Diaphragm

- Innervated by C3, C4, C5 (Phrenic nerve)
- Diaphragm irritation → “referred” shoulder pain
 - Classic example is gallbladder disease
 - Also lower lung masses
 - Irritation can cause dyspnea and hiccups
- Cut nerve → diaphragm elevation, dyspnea
 - “Paradoxical movement”: Moves up with inspiration
 - Can see on fluoroscopy (“sniff test”)

Muscles of Quiet Respiration

- Diaphragm → inspiration
- Exhalation is passive with normal (“quiet”) breathing

Exercise Breathing

- Inspiration (neck)
 - Scalenus – raise ribs
 - Sternocleidomastoids – raise sternum
- Exhalation (abdomen)
 - Rectus muscle
 - Internal/external obliques
 - Transverse abdominis
 - Internal intercostals
- Use of accessory muscles in respiratory distress
Lung Capacities

Capacity = sum of two volumes

- Total lung capacity
 - Sum of all volumes
 - RV + ERV + IRV + TV
- Inspiratory capacity
 - Most air you can inspire
 - TV + IRV
- Vital capacity
 - Most you can exhale
 - TV + IRV + ERV

RV
ERV
IRV
TV
Lung and Chest Wall

- Lungs tend to collapse
 - Pull inward/recoil
- Chest wall tends to expand
 - Spring outward

Ventilation

- Ventilation = volume x frequency (resp rate)
 - 500cc per breath x 20 breaths per minute
 - 10,000cc/min
- Alveolar ventilation = useful for gas exchange
- Dead space ventilation = wasted ventilation
 - Nose, trachea, other areas with no gas exchange

Dead Space

- Space filled with air but no gas exchange
- #1: Anatomic dead space
 - Volume of conducting portions respiratory tract
 - Nose, trachea
- #2: Physiologic dead space
 - Anatomic PLUS volume of alveoli that don’t exchange gas
 - Insufficient perfusion
 - Apex is largest contributor
- Physiologic dead space increases many diseases

Ventilation

- Total ventilation (TV) = volume/min out each breath
 - *Volume in slightly > volume out due to O₂ uptake
 - Sometimes called minute ventilation
- Alveolar ventilation
 - Fresh air for gas exchange
 - TV minus “dead space”
- Imagine 500cc out per minute
 - 150cc fills dead space
 - Only 350cc available for gas exchange

Measuring Dead Space

- Bohr’s method
- Physiologic dead space (V_d) from:
 - Tidal volume
 - P_{CO_2} (exhaled air)
 - P_{aCO_2} (blood gas)

$$V_d = P_{CO_2} - P_{aCO_2}$$

Lung Volumes and Pressures

- Lungs tend to collapse
 - Pull inward/recoil
- Chest wall tends to expand
 - Spring outward
Lung Compliance

- For given pressure how much volume changes
- Compliant lung
 - Small amount diaphragm effort
 - Generates small pressure change across lungs
 - Large volume change
 - Easy to move air in/out
- Non-compliant lung
 - Large amount diaphragm effort
 - Big pressure change across lungs
 - Small volume change (lungs stiff)
 - Hard to move air in/out

\[C = \frac{\Delta V}{\Delta P} \]
Lung Compliance

- Decreased
 - Pneumonia
 - Pulmonary edema
 - Pulmonary fibrosis
- Increased
 - Emphysema (floppy lungs)
 - Aging

\[C = \frac{\Delta V}{\Delta P} \]

Resistance to Air Flow

- Upper airways about 50% resistance
 - Nose, mouth, pharynx
- Lower airway resistance
 - Highest in medium bronchi (turbulent flow)
 - Lowest in terminal bronchioles - slows laminar flow